Properties

Label 2156.1315
Modulus $2156$
Conductor $2156$
Order $70$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([35,25,63]))
 
pari: [g,chi] = znchar(Mod(1315,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(2156\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.cc

\(\chi_{2156}(83,\cdot)\) \(\chi_{2156}(139,\cdot)\) \(\chi_{2156}(167,\cdot)\) \(\chi_{2156}(447,\cdot)\) \(\chi_{2156}(475,\cdot)\) \(\chi_{2156}(503,\cdot)\) \(\chi_{2156}(699,\cdot)\) \(\chi_{2156}(755,\cdot)\) \(\chi_{2156}(811,\cdot)\) \(\chi_{2156}(1007,\cdot)\) \(\chi_{2156}(1063,\cdot)\) \(\chi_{2156}(1091,\cdot)\) \(\chi_{2156}(1119,\cdot)\) \(\chi_{2156}(1315,\cdot)\) \(\chi_{2156}(1399,\cdot)\) \(\chi_{2156}(1427,\cdot)\) \(\chi_{2156}(1623,\cdot)\) \(\chi_{2156}(1679,\cdot)\) \(\chi_{2156}(1707,\cdot)\) \(\chi_{2156}(1735,\cdot)\) \(\chi_{2156}(1931,\cdot)\) \(\chi_{2156}(1987,\cdot)\) \(\chi_{2156}(2015,\cdot)\) \(\chi_{2156}(2043,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((1079,1277,981)\) → \((-1,e\left(\frac{5}{14}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1315, a) \) \(-1\)\(1\)\(e\left(\frac{2}{35}\right)\)\(e\left(\frac{67}{70}\right)\)\(e\left(\frac{4}{35}\right)\)\(e\left(\frac{24}{35}\right)\)\(e\left(\frac{1}{70}\right)\)\(e\left(\frac{1}{35}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{32}{35}\right)\)\(e\left(\frac{6}{35}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1315,a) \;\) at \(\;a = \) e.g. 2