Properties

Label 2156.1497
Modulus 21562156
Conductor 4949
Order 1414
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2156, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([0,1,0]))
 
Copy content pari:[g,chi] = znchar(Mod(1497,2156))
 

Basic properties

Modulus: 21562156
Conductor: 4949
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1414
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ49(27,)\chi_{49}(27,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2156.bf

χ2156(265,)\chi_{2156}(265,\cdot) χ2156(573,)\chi_{2156}(573,\cdot) χ2156(1189,)\chi_{2156}(1189,\cdot) χ2156(1497,)\chi_{2156}(1497,\cdot) χ2156(1805,)\chi_{2156}(1805,\cdot) χ2156(2113,)\chi_{2156}(2113,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 14.0.1341068619663964900807.1

Values on generators

(1079,1277,981)(1079,1277,981)(1,e(114),1)(1,e\left(\frac{1}{14}\right),1)

First values

aa 1-1113355991313151517171919232325252727
χ2156(1497,a) \chi_{ 2156 }(1497, a) 1-111e(114)e\left(\frac{1}{14}\right)e(114)e\left(\frac{1}{14}\right)e(17)e\left(\frac{1}{7}\right)e(514)e\left(\frac{5}{14}\right)e(17)e\left(\frac{1}{7}\right)e(1114)e\left(\frac{11}{14}\right)1-1e(57)e\left(\frac{5}{7}\right)e(17)e\left(\frac{1}{7}\right)e(314)e\left(\frac{3}{14}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2156(1497,a)   \chi_{ 2156 }(1497,a) \; at   a=\;a = e.g. 2