Properties

Label 2156.1537
Modulus $2156$
Conductor $77$
Order $30$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,20,9]))
 
pari: [g,chi] = znchar(Mod(1537,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(77\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{77}(74,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.bo

\(\chi_{2156}(557,\cdot)\) \(\chi_{2156}(569,\cdot)\) \(\chi_{2156}(765,\cdot)\) \(\chi_{2156}(1157,\cdot)\) \(\chi_{2156}(1537,\cdot)\) \(\chi_{2156}(1733,\cdot)\) \(\chi_{2156}(1745,\cdot)\) \(\chi_{2156}(2125,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.0.1046076147688308987260717152173116396995512371.1

Values on generators

\((1079,1277,981)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1537, a) \) \(-1\)\(1\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{1}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1537,a) \;\) at \(\;a = \) e.g. 2