Properties

Label 2156.1563
Modulus $2156$
Conductor $196$
Order $42$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,8,0]))
 
pari: [g,chi] = znchar(Mod(1563,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(196\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{196}(191,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.bs

\(\chi_{2156}(23,\cdot)\) \(\chi_{2156}(331,\cdot)\) \(\chi_{2156}(375,\cdot)\) \(\chi_{2156}(639,\cdot)\) \(\chi_{2156}(683,\cdot)\) \(\chi_{2156}(947,\cdot)\) \(\chi_{2156}(991,\cdot)\) \(\chi_{2156}(1299,\cdot)\) \(\chi_{2156}(1563,\cdot)\) \(\chi_{2156}(1607,\cdot)\) \(\chi_{2156}(1871,\cdot)\) \(\chi_{2156}(1915,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.0.74252462132603256348231837398371002884673933378885582779211491265789772693504.1

Values on generators

\((1079,1277,981)\) → \((-1,e\left(\frac{4}{21}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1563, a) \) \(-1\)\(1\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{1}{21}\right)\)\(e\left(\frac{1}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1563,a) \;\) at \(\;a = \) e.g. 2