Properties

Label 2156.1605
Modulus $2156$
Conductor $539$
Order $42$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,32,21]))
 
pari: [g,chi] = znchar(Mod(1605,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(539\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{539}(527,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.bw

\(\chi_{2156}(65,\cdot)\) \(\chi_{2156}(109,\cdot)\) \(\chi_{2156}(417,\cdot)\) \(\chi_{2156}(681,\cdot)\) \(\chi_{2156}(725,\cdot)\) \(\chi_{2156}(989,\cdot)\) \(\chi_{2156}(1033,\cdot)\) \(\chi_{2156}(1297,\cdot)\) \(\chi_{2156}(1605,\cdot)\) \(\chi_{2156}(1649,\cdot)\) \(\chi_{2156}(1913,\cdot)\) \(\chi_{2156}(1957,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((1079,1277,981)\) → \((1,e\left(\frac{16}{21}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1605, a) \) \(-1\)\(1\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{2}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1605,a) \;\) at \(\;a = \) e.g. 2