Properties

Label 2156.1695
Modulus $2156$
Conductor $196$
Order $14$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,6,0]))
 
pari: [g,chi] = znchar(Mod(1695,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(196\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{196}(127,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.bc

\(\chi_{2156}(155,\cdot)\) \(\chi_{2156}(463,\cdot)\) \(\chi_{2156}(771,\cdot)\) \(\chi_{2156}(1387,\cdot)\) \(\chi_{2156}(1695,\cdot)\) \(\chi_{2156}(2003,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.0.3138866894939200133545984.1

Values on generators

\((1079,1277,981)\) → \((-1,e\left(\frac{3}{7}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1695, a) \) \(-1\)\(1\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{5}{7}\right)\)\(-1\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{11}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1695,a) \;\) at \(\;a = \) e.g. 2