Properties

Label 2156.1929
Modulus $2156$
Conductor $77$
Order $15$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,20,6]))
 
pari: [g,chi] = znchar(Mod(1929,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(77\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{77}(4,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.bg

\(\chi_{2156}(361,\cdot)\) \(\chi_{2156}(753,\cdot)\) \(\chi_{2156}(949,\cdot)\) \(\chi_{2156}(961,\cdot)\) \(\chi_{2156}(1549,\cdot)\) \(\chi_{2156}(1929,\cdot)\) \(\chi_{2156}(1941,\cdot)\) \(\chi_{2156}(2137,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 15.15.886528337182930278529.1

Values on generators

\((1079,1277,981)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1929, a) \) \(1\)\(1\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{4}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1929,a) \;\) at \(\;a = \) e.g. 2