Properties

Label 2156.353
Modulus $2156$
Conductor $49$
Order $42$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,13,0]))
 
pari: [g,chi] = znchar(Mod(353,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(49\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{49}(10,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.br

\(\chi_{2156}(45,\cdot)\) \(\chi_{2156}(89,\cdot)\) \(\chi_{2156}(353,\cdot)\) \(\chi_{2156}(397,\cdot)\) \(\chi_{2156}(661,\cdot)\) \(\chi_{2156}(969,\cdot)\) \(\chi_{2156}(1013,\cdot)\) \(\chi_{2156}(1277,\cdot)\) \(\chi_{2156}(1321,\cdot)\) \(\chi_{2156}(1585,\cdot)\) \(\chi_{2156}(1629,\cdot)\) \(\chi_{2156}(1937,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((1079,1277,981)\) → \((1,e\left(\frac{13}{42}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(353, a) \) \(-1\)\(1\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{13}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(353,a) \;\) at \(\;a = \) e.g. 2