Properties

Label 2156.501
Modulus $2156$
Conductor $539$
Order $210$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(210))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,200,189]))
 
pari: [g,chi] = znchar(Mod(501,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(539\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(210\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{539}(501,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.cf

\(\chi_{2156}(149,\cdot)\) \(\chi_{2156}(193,\cdot)\) \(\chi_{2156}(205,\cdot)\) \(\chi_{2156}(233,\cdot)\) \(\chi_{2156}(249,\cdot)\) \(\chi_{2156}(261,\cdot)\) \(\chi_{2156}(277,\cdot)\) \(\chi_{2156}(305,\cdot)\) \(\chi_{2156}(457,\cdot)\) \(\chi_{2156}(501,\cdot)\) \(\chi_{2156}(513,\cdot)\) \(\chi_{2156}(541,\cdot)\) \(\chi_{2156}(585,\cdot)\) \(\chi_{2156}(613,\cdot)\) \(\chi_{2156}(809,\cdot)\) \(\chi_{2156}(821,\cdot)\) \(\chi_{2156}(849,\cdot)\) \(\chi_{2156}(865,\cdot)\) \(\chi_{2156}(877,\cdot)\) \(\chi_{2156}(893,\cdot)\) \(\chi_{2156}(921,\cdot)\) \(\chi_{2156}(1073,\cdot)\) \(\chi_{2156}(1117,\cdot)\) \(\chi_{2156}(1129,\cdot)\) \(\chi_{2156}(1173,\cdot)\) \(\chi_{2156}(1185,\cdot)\) \(\chi_{2156}(1201,\cdot)\) \(\chi_{2156}(1229,\cdot)\) \(\chi_{2156}(1381,\cdot)\) \(\chi_{2156}(1425,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((1079,1277,981)\) → \((1,e\left(\frac{20}{21}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(501, a) \) \(-1\)\(1\)\(e\left(\frac{16}{105}\right)\)\(e\left(\frac{23}{105}\right)\)\(e\left(\frac{32}{105}\right)\)\(e\left(\frac{23}{70}\right)\)\(e\left(\frac{13}{35}\right)\)\(e\left(\frac{191}{210}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{46}{105}\right)\)\(e\left(\frac{16}{35}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(501,a) \;\) at \(\;a = \) e.g. 2