sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2156, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([0,200,189]))
pari:[g,chi] = znchar(Mod(501,2156))
χ2156(149,⋅)
χ2156(193,⋅)
χ2156(205,⋅)
χ2156(233,⋅)
χ2156(249,⋅)
χ2156(261,⋅)
χ2156(277,⋅)
χ2156(305,⋅)
χ2156(457,⋅)
χ2156(501,⋅)
χ2156(513,⋅)
χ2156(541,⋅)
χ2156(585,⋅)
χ2156(613,⋅)
χ2156(809,⋅)
χ2156(821,⋅)
χ2156(849,⋅)
χ2156(865,⋅)
χ2156(877,⋅)
χ2156(893,⋅)
χ2156(921,⋅)
χ2156(1073,⋅)
χ2156(1117,⋅)
χ2156(1129,⋅)
χ2156(1173,⋅)
χ2156(1185,⋅)
χ2156(1201,⋅)
χ2156(1229,⋅)
χ2156(1381,⋅)
χ2156(1425,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1079,1277,981) → (1,e(2120),e(109))
a |
−1 | 1 | 3 | 5 | 9 | 13 | 15 | 17 | 19 | 23 | 25 | 27 |
χ2156(501,a) |
−1 | 1 | e(10516) | e(10523) | e(10532) | e(7023) | e(3513) | e(210191) | e(301) | e(214) | e(10546) | e(3516) |
sage:chi.jacobi_sum(n)