from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2156, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,25,0]))
pari: [g,chi] = znchar(Mod(507,2156))
Basic properties
Modulus: | \(2156\) | |
Conductor: | \(196\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{196}(115,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2156.bv
\(\chi_{2156}(199,\cdot)\) \(\chi_{2156}(243,\cdot)\) \(\chi_{2156}(507,\cdot)\) \(\chi_{2156}(551,\cdot)\) \(\chi_{2156}(859,\cdot)\) \(\chi_{2156}(1123,\cdot)\) \(\chi_{2156}(1167,\cdot)\) \(\chi_{2156}(1431,\cdot)\) \(\chi_{2156}(1475,\cdot)\) \(\chi_{2156}(1739,\cdot)\) \(\chi_{2156}(2047,\cdot)\) \(\chi_{2156}(2091,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | \(\Q(\zeta_{196})^+\) |
Values on generators
\((1079,1277,981)\) → \((-1,e\left(\frac{25}{42}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 2156 }(507, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) |
sage: chi.jacobi_sum(n)