Properties

Label 2156.741
Modulus $2156$
Conductor $539$
Order $70$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,45,14]))
 
pari: [g,chi] = znchar(Mod(741,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(539\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{539}(202,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.bx

\(\chi_{2156}(69,\cdot)\) \(\chi_{2156}(125,\cdot)\) \(\chi_{2156}(181,\cdot)\) \(\chi_{2156}(377,\cdot)\) \(\chi_{2156}(405,\cdot)\) \(\chi_{2156}(433,\cdot)\) \(\chi_{2156}(713,\cdot)\) \(\chi_{2156}(741,\cdot)\) \(\chi_{2156}(797,\cdot)\) \(\chi_{2156}(993,\cdot)\) \(\chi_{2156}(1021,\cdot)\) \(\chi_{2156}(1049,\cdot)\) \(\chi_{2156}(1105,\cdot)\) \(\chi_{2156}(1301,\cdot)\) \(\chi_{2156}(1329,\cdot)\) \(\chi_{2156}(1357,\cdot)\) \(\chi_{2156}(1413,\cdot)\) \(\chi_{2156}(1609,\cdot)\) \(\chi_{2156}(1637,\cdot)\) \(\chi_{2156}(1721,\cdot)\) \(\chi_{2156}(1917,\cdot)\) \(\chi_{2156}(1945,\cdot)\) \(\chi_{2156}(1973,\cdot)\) \(\chi_{2156}(2029,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((1079,1277,981)\) → \((1,e\left(\frac{9}{14}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(741, a) \) \(-1\)\(1\)\(e\left(\frac{17}{70}\right)\)\(e\left(\frac{31}{70}\right)\)\(e\left(\frac{17}{35}\right)\)\(e\left(\frac{29}{70}\right)\)\(e\left(\frac{24}{35}\right)\)\(e\left(\frac{61}{70}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{31}{35}\right)\)\(e\left(\frac{51}{70}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(741,a) \;\) at \(\;a = \) e.g. 2