Properties

Label 2156.751
Modulus $2156$
Conductor $2156$
Order $210$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(210))
 
M = H._module
 
chi = DirichletCharacter(H, M([105,100,168]))
 
pari: [g,chi] = znchar(Mod(751,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(2156\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(210\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.cj

\(\chi_{2156}(135,\cdot)\) \(\chi_{2156}(163,\cdot)\) \(\chi_{2156}(179,\cdot)\) \(\chi_{2156}(191,\cdot)\) \(\chi_{2156}(207,\cdot)\) \(\chi_{2156}(235,\cdot)\) \(\chi_{2156}(247,\cdot)\) \(\chi_{2156}(291,\cdot)\) \(\chi_{2156}(443,\cdot)\) \(\chi_{2156}(487,\cdot)\) \(\chi_{2156}(499,\cdot)\) \(\chi_{2156}(515,\cdot)\) \(\chi_{2156}(543,\cdot)\) \(\chi_{2156}(555,\cdot)\) \(\chi_{2156}(599,\cdot)\) \(\chi_{2156}(751,\cdot)\) \(\chi_{2156}(779,\cdot)\) \(\chi_{2156}(795,\cdot)\) \(\chi_{2156}(807,\cdot)\) \(\chi_{2156}(823,\cdot)\) \(\chi_{2156}(907,\cdot)\) \(\chi_{2156}(1087,\cdot)\) \(\chi_{2156}(1103,\cdot)\) \(\chi_{2156}(1115,\cdot)\) \(\chi_{2156}(1131,\cdot)\) \(\chi_{2156}(1159,\cdot)\) \(\chi_{2156}(1171,\cdot)\) \(\chi_{2156}(1215,\cdot)\) \(\chi_{2156}(1367,\cdot)\) \(\chi_{2156}(1395,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((1079,1277,981)\) → \((-1,e\left(\frac{10}{21}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(751, a) \) \(-1\)\(1\)\(e\left(\frac{79}{210}\right)\)\(e\left(\frac{1}{105}\right)\)\(e\left(\frac{79}{105}\right)\)\(e\left(\frac{18}{35}\right)\)\(e\left(\frac{27}{70}\right)\)\(e\left(\frac{11}{105}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{2}{105}\right)\)\(e\left(\frac{9}{70}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(751,a) \;\) at \(\;a = \) e.g. 2