sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2156, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([0,115,42]))
pari:[g,chi] = znchar(Mod(873,2156))
χ2156(5,⋅)
χ2156(157,⋅)
χ2156(185,⋅)
χ2156(201,⋅)
χ2156(213,⋅)
χ2156(229,⋅)
χ2156(257,⋅)
χ2156(269,⋅)
χ2156(465,⋅)
χ2156(493,⋅)
χ2156(537,⋅)
χ2156(565,⋅)
χ2156(577,⋅)
χ2156(621,⋅)
χ2156(773,⋅)
χ2156(801,⋅)
χ2156(817,⋅)
χ2156(829,⋅)
χ2156(845,⋅)
χ2156(873,⋅)
χ2156(885,⋅)
χ2156(929,⋅)
χ2156(1081,⋅)
χ2156(1125,⋅)
χ2156(1137,⋅)
χ2156(1153,⋅)
χ2156(1181,⋅)
χ2156(1193,⋅)
χ2156(1237,⋅)
χ2156(1389,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1079,1277,981) → (1,e(4223),e(51))
a |
−1 | 1 | 3 | 5 | 9 | 13 | 15 | 17 | 19 | 23 | 25 | 27 |
χ2156(873,a) |
−1 | 1 | e(21031) | e(210143) | e(10531) | e(7019) | e(3529) | e(210103) | e(3023) | e(2117) | e(10538) | e(7031) |
sage:chi.jacobi_sum(n)