Properties

Label 2156.873
Modulus $2156$
Conductor $539$
Order $210$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(210))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,115,42]))
 
pari: [g,chi] = znchar(Mod(873,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(539\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(210\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{539}(334,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.ck

\(\chi_{2156}(5,\cdot)\) \(\chi_{2156}(157,\cdot)\) \(\chi_{2156}(185,\cdot)\) \(\chi_{2156}(201,\cdot)\) \(\chi_{2156}(213,\cdot)\) \(\chi_{2156}(229,\cdot)\) \(\chi_{2156}(257,\cdot)\) \(\chi_{2156}(269,\cdot)\) \(\chi_{2156}(465,\cdot)\) \(\chi_{2156}(493,\cdot)\) \(\chi_{2156}(537,\cdot)\) \(\chi_{2156}(565,\cdot)\) \(\chi_{2156}(577,\cdot)\) \(\chi_{2156}(621,\cdot)\) \(\chi_{2156}(773,\cdot)\) \(\chi_{2156}(801,\cdot)\) \(\chi_{2156}(817,\cdot)\) \(\chi_{2156}(829,\cdot)\) \(\chi_{2156}(845,\cdot)\) \(\chi_{2156}(873,\cdot)\) \(\chi_{2156}(885,\cdot)\) \(\chi_{2156}(929,\cdot)\) \(\chi_{2156}(1081,\cdot)\) \(\chi_{2156}(1125,\cdot)\) \(\chi_{2156}(1137,\cdot)\) \(\chi_{2156}(1153,\cdot)\) \(\chi_{2156}(1181,\cdot)\) \(\chi_{2156}(1193,\cdot)\) \(\chi_{2156}(1237,\cdot)\) \(\chi_{2156}(1389,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((1079,1277,981)\) → \((1,e\left(\frac{23}{42}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(873, a) \) \(-1\)\(1\)\(e\left(\frac{31}{210}\right)\)\(e\left(\frac{143}{210}\right)\)\(e\left(\frac{31}{105}\right)\)\(e\left(\frac{19}{70}\right)\)\(e\left(\frac{29}{35}\right)\)\(e\left(\frac{103}{210}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{38}{105}\right)\)\(e\left(\frac{31}{70}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(873,a) \;\) at \(\;a = \) e.g. 2