Properties

Label 2156.873
Modulus 21562156
Conductor 539539
Order 210210
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2156, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,115,42]))
 
Copy content pari:[g,chi] = znchar(Mod(873,2156))
 

Basic properties

Modulus: 21562156
Conductor: 539539
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 210210
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ539(334,)\chi_{539}(334,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2156.ck

χ2156(5,)\chi_{2156}(5,\cdot) χ2156(157,)\chi_{2156}(157,\cdot) χ2156(185,)\chi_{2156}(185,\cdot) χ2156(201,)\chi_{2156}(201,\cdot) χ2156(213,)\chi_{2156}(213,\cdot) χ2156(229,)\chi_{2156}(229,\cdot) χ2156(257,)\chi_{2156}(257,\cdot) χ2156(269,)\chi_{2156}(269,\cdot) χ2156(465,)\chi_{2156}(465,\cdot) χ2156(493,)\chi_{2156}(493,\cdot) χ2156(537,)\chi_{2156}(537,\cdot) χ2156(565,)\chi_{2156}(565,\cdot) χ2156(577,)\chi_{2156}(577,\cdot) χ2156(621,)\chi_{2156}(621,\cdot) χ2156(773,)\chi_{2156}(773,\cdot) χ2156(801,)\chi_{2156}(801,\cdot) χ2156(817,)\chi_{2156}(817,\cdot) χ2156(829,)\chi_{2156}(829,\cdot) χ2156(845,)\chi_{2156}(845,\cdot) χ2156(873,)\chi_{2156}(873,\cdot) χ2156(885,)\chi_{2156}(885,\cdot) χ2156(929,)\chi_{2156}(929,\cdot) χ2156(1081,)\chi_{2156}(1081,\cdot) χ2156(1125,)\chi_{2156}(1125,\cdot) χ2156(1137,)\chi_{2156}(1137,\cdot) χ2156(1153,)\chi_{2156}(1153,\cdot) χ2156(1181,)\chi_{2156}(1181,\cdot) χ2156(1193,)\chi_{2156}(1193,\cdot) χ2156(1237,)\chi_{2156}(1237,\cdot) χ2156(1389,)\chi_{2156}(1389,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ105)\Q(\zeta_{105})
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

(1079,1277,981)(1079,1277,981)(1,e(2342),e(15))(1,e\left(\frac{23}{42}\right),e\left(\frac{1}{5}\right))

First values

aa 1-1113355991313151517171919232325252727
χ2156(873,a) \chi_{ 2156 }(873, a) 1-111e(31210)e\left(\frac{31}{210}\right)e(143210)e\left(\frac{143}{210}\right)e(31105)e\left(\frac{31}{105}\right)e(1970)e\left(\frac{19}{70}\right)e(2935)e\left(\frac{29}{35}\right)e(103210)e\left(\frac{103}{210}\right)e(2330)e\left(\frac{23}{30}\right)e(1721)e\left(\frac{17}{21}\right)e(38105)e\left(\frac{38}{105}\right)e(3170)e\left(\frac{31}{70}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2156(873,a)   \chi_{ 2156 }(873,a) \; at   a=\;a = e.g. 2