Properties

Label 2159.1123
Modulus $2159$
Conductor $127$
Order $3$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2159, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2]))
 
pari: [g,chi] = znchar(Mod(1123,2159))
 

Basic properties

Modulus: \(2159\)
Conductor: \(127\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(3\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{127}(107,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2159.e

\(\chi_{2159}(273,\cdot)\) \(\chi_{2159}(1123,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 3.3.16129.1

Values on generators

\((1652,511)\) → \((1,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2159 }(1123, a) \) \(1\)\(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2159 }(1123,a) \;\) at \(\;a = \) e.g. 2