Properties

Label 2159.1123
Modulus 21592159
Conductor 127127
Order 33
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2159, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([0,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1123,2159))
 

Basic properties

Modulus: 21592159
Conductor: 127127
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 33
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ127(107,)\chi_{127}(107,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2159.e

χ2159(273,)\chi_{2159}(273,\cdot) χ2159(1123,)\chi_{2159}(1123,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 3.3.16129.1

Values on generators

(1652,511)(1652,511)(1,e(13))(1,e\left(\frac{1}{3}\right))

First values

aa 1-111223344556677889910101111
χ2159(1123,a) \chi_{ 2159 }(1123, a) 111111e(13)e\left(\frac{1}{3}\right)1111e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(23)e\left(\frac{2}{3}\right)11e(23)e\left(\frac{2}{3}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2159(1123,a)   \chi_{ 2159 }(1123,a) \; at   a=\;a = e.g. 2