Properties

Label 2160.107
Modulus 21602160
Conductor 240240
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,1,2,1]))
 
pari: [g,chi] = znchar(Mod(107,2160))
 

Basic properties

Modulus: 21602160
Conductor: 240240
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ240(107,)\chi_{240}(107,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2160.ba

χ2160(107,)\chi_{2160}(107,\cdot) χ2160(323,)\chi_{2160}(323,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.0.2304000.1

Values on generators

(271,1621,2081,1297)(271,1621,2081,1297)(1,i,1,i)(-1,i,-1,i)

First values

aa 1-11177111113131717191923232929313137374141
χ2160(107,a) \chi_{ 2160 }(107, a) 1-111iiii1-1i-ii-iiii-i1-11-111
sage: chi.jacobi_sum(n)
 
χ2160(107,a)   \chi_{ 2160 }(107,a) \; at   a=\;a = e.g. 2