from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2160, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,9,14,0]))
pari: [g,chi] = znchar(Mod(1451,2160))
Basic properties
Modulus: | \(2160\) | |
Conductor: | \(432\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{432}(155,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2160.ep
\(\chi_{2160}(11,\cdot)\) \(\chi_{2160}(131,\cdot)\) \(\chi_{2160}(371,\cdot)\) \(\chi_{2160}(491,\cdot)\) \(\chi_{2160}(731,\cdot)\) \(\chi_{2160}(851,\cdot)\) \(\chi_{2160}(1091,\cdot)\) \(\chi_{2160}(1211,\cdot)\) \(\chi_{2160}(1451,\cdot)\) \(\chi_{2160}(1571,\cdot)\) \(\chi_{2160}(1811,\cdot)\) \(\chi_{2160}(1931,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | 36.36.5532004127928253705369187176396364210546696053048780432717505515499814912.1 |
Values on generators
\((271,1621,2081,1297)\) → \((-1,i,e\left(\frac{7}{18}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2160 }(1451, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) |
sage: chi.jacobi_sum(n)