Properties

Label 2160.17
Modulus $2160$
Conductor $45$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,10,3]))
 
pari: [g,chi] = znchar(Mod(17,2160))
 

Basic properties

Modulus: \(2160\)
Conductor: \(45\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{45}(32,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2160.cv

\(\chi_{2160}(17,\cdot)\) \(\chi_{2160}(737,\cdot)\) \(\chi_{2160}(1313,\cdot)\) \(\chi_{2160}(2033,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: \(\Q(\zeta_{45})^+\)

Values on generators

\((271,1621,2081,1297)\) → \((1,1,e\left(\frac{5}{6}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2160 }(17, a) \) \(1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(-i\)\(-1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(i\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2160 }(17,a) \;\) at \(\;a = \) e.g. 2