Properties

Label 2160.79
Modulus $2160$
Conductor $540$
Order $18$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,0,10,9]))
 
pari: [g,chi] = znchar(Mod(79,2160))
 

Basic properties

Modulus: \(2160\)
Conductor: \(540\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{540}(79,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2160.dq

\(\chi_{2160}(79,\cdot)\) \(\chi_{2160}(319,\cdot)\) \(\chi_{2160}(799,\cdot)\) \(\chi_{2160}(1039,\cdot)\) \(\chi_{2160}(1519,\cdot)\) \(\chi_{2160}(1759,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((271,1621,2081,1297)\) → \((-1,1,e\left(\frac{5}{9}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2160 }(79, a) \) \(-1\)\(1\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{4}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2160 }(79,a) \;\) at \(\;a = \) e.g. 2