Properties

Label 216000.114751
Modulus 216000216000
Conductor 44
Order 22
Real yes
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,0,0]))
 
pari: [g,chi] = znchar(Mod(114751,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 44
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ4(3,)\chi_{4}(3,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.e

χ216000(114751,)\chi_{216000}(114751,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(1)\Q(\sqrt{-1})

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,1,1,1)(-1,1,1,1)

First values

aa 1-11177111113131717191923232929313137374141
χ216000(114751,a) \chi_{ 216000 }(114751, a) 1-1111-11-111111-11-1111-11111
sage: chi.jacobi_sum(n)
 
χ216000(114751,a)   \chi_{ 216000 }(114751,a) \; at   a=\;a = e.g. 2