Properties

Label 216000.14617
Modulus 216000216000
Conductor 3600036000
Order 600600
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(600))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,75,200,318]))
 
pari: [g,chi] = znchar(Mod(14617,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 3600036000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 600600
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ36000(22117,)\chi_{36000}(22117,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.uz

χ216000(73,)\chi_{216000}(73,\cdot) χ216000(2953,)\chi_{216000}(2953,\cdot) χ216000(3097,)\chi_{216000}(3097,\cdot) χ216000(5977,)\chi_{216000}(5977,\cdot) χ216000(7273,)\chi_{216000}(7273,\cdot) χ216000(7417,)\chi_{216000}(7417,\cdot) χ216000(8713,)\chi_{216000}(8713,\cdot) χ216000(10297,)\chi_{216000}(10297,\cdot) χ216000(11737,)\chi_{216000}(11737,\cdot) χ216000(13033,)\chi_{216000}(13033,\cdot) χ216000(14617,)\chi_{216000}(14617,\cdot) χ216000(15913,)\chi_{216000}(15913,\cdot) χ216000(17353,)\chi_{216000}(17353,\cdot) χ216000(18937,)\chi_{216000}(18937,\cdot) χ216000(20233,)\chi_{216000}(20233,\cdot) χ216000(20377,)\chi_{216000}(20377,\cdot) χ216000(21673,)\chi_{216000}(21673,\cdot) χ216000(24553,)\chi_{216000}(24553,\cdot) χ216000(24697,)\chi_{216000}(24697,\cdot) χ216000(27577,)\chi_{216000}(27577,\cdot) χ216000(28873,)\chi_{216000}(28873,\cdot) χ216000(29017,)\chi_{216000}(29017,\cdot) χ216000(30313,)\chi_{216000}(30313,\cdot) χ216000(31897,)\chi_{216000}(31897,\cdot) χ216000(33337,)\chi_{216000}(33337,\cdot) χ216000(34633,)\chi_{216000}(34633,\cdot) χ216000(36217,)\chi_{216000}(36217,\cdot) χ216000(37513,)\chi_{216000}(37513,\cdot) χ216000(38953,)\chi_{216000}(38953,\cdot) χ216000(40537,)\chi_{216000}(40537,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ600)\Q(\zeta_{600})
Fixed field: Number field defined by a degree 600 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(18),e(13),e(53100))(1,e\left(\frac{1}{8}\right),e\left(\frac{1}{3}\right),e\left(\frac{53}{100}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(14617,a) \chi_{ 216000 }(14617, a) 1-111e(1930)e\left(\frac{19}{30}\right)e(143600)e\left(\frac{143}{600}\right)e(127600)e\left(\frac{127}{600}\right)e(19100)e\left(\frac{19}{100}\right)e(83200)e\left(\frac{83}{200}\right)e(127150)e\left(\frac{127}{150}\right)e(341600)e\left(\frac{341}{600}\right)e(875)e\left(\frac{8}{75}\right)e(99200)e\left(\frac{99}{200}\right)e(221300)e\left(\frac{221}{300}\right)
sage: chi.jacobi_sum(n)
 
χ216000(14617,a)   \chi_{ 216000 }(14617,a) \; at   a=\;a = e.g. 2