from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(216000, base_ring=CyclotomicField(600))
M = H._module
chi = DirichletCharacter(H, M([0,75,200,318]))
pari: [g,chi] = znchar(Mod(14617,216000))
χ216000(73,⋅)
χ216000(2953,⋅)
χ216000(3097,⋅)
χ216000(5977,⋅)
χ216000(7273,⋅)
χ216000(7417,⋅)
χ216000(8713,⋅)
χ216000(10297,⋅)
χ216000(11737,⋅)
χ216000(13033,⋅)
χ216000(14617,⋅)
χ216000(15913,⋅)
χ216000(17353,⋅)
χ216000(18937,⋅)
χ216000(20233,⋅)
χ216000(20377,⋅)
χ216000(21673,⋅)
χ216000(24553,⋅)
χ216000(24697,⋅)
χ216000(27577,⋅)
χ216000(28873,⋅)
χ216000(29017,⋅)
χ216000(30313,⋅)
χ216000(31897,⋅)
χ216000(33337,⋅)
χ216000(34633,⋅)
χ216000(36217,⋅)
χ216000(37513,⋅)
χ216000(38953,⋅)
χ216000(40537,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(114751,202501,136001,29377) → (1,e(81),e(31),e(10053))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ216000(14617,a) |
−1 | 1 | e(3019) | e(600143) | e(600127) | e(10019) | e(20083) | e(150127) | e(600341) | e(758) | e(20099) | e(300221) |