Properties

Label 216000.67
Modulus 216000216000
Conductor 216000216000
Order 36003600
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(3600))
 
M = H._module
 
chi = DirichletCharacter(H, M([1800,675,1600,468]))
 
pari: [g,chi] = znchar(Mod(67,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 216000216000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 36003600
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.yu

χ216000(67,)\chi_{216000}(67,\cdot) χ216000(283,)\chi_{216000}(283,\cdot) χ216000(547,)\chi_{216000}(547,\cdot) χ216000(763,)\chi_{216000}(763,\cdot) χ216000(787,)\chi_{216000}(787,\cdot) χ216000(1003,)\chi_{216000}(1003,\cdot) χ216000(1267,)\chi_{216000}(1267,\cdot) χ216000(1483,)\chi_{216000}(1483,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3600)\Q(\zeta_{3600})
Fixed field: Number field defined by a degree 3600 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(316),e(49),e(13100))(-1,e\left(\frac{3}{16}\right),e\left(\frac{4}{9}\right),e\left(\frac{13}{100}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(67,a) \chi_{ 216000 }(67, a) 1111e(193360)e\left(\frac{193}{360}\right)e(3433600)e\left(\frac{343}{3600}\right)e(15773600)e\left(\frac{1577}{3600}\right)e(61150)e\left(\frac{61}{150}\right)e(5831200)e\left(\frac{583}{1200}\right)e(791800)e\left(\frac{79}{1800}\right)e(20413600)e\left(\frac{2041}{3600}\right)e(29225)e\left(\frac{29}{225}\right)e(1491200)e\left(\frac{149}{1200}\right)e(16211800)e\left(\frac{1621}{1800}\right)
sage: chi.jacobi_sum(n)
 
χ216000(67,a)   \chi_{ 216000 }(67,a) \; at   a=\;a = e.g. 2