Properties

Label 2167.61
Modulus $2167$
Conductor $2167$
Order $490$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2167, base_ring=CyclotomicField(490))
 
M = H._module
 
chi = DirichletCharacter(H, M([441,160]))
 
pari: [g,chi] = znchar(Mod(61,2167))
 

Basic properties

Modulus: \(2167\)
Conductor: \(2167\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(490\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2167.bf

\(\chi_{2167}(24,\cdot)\) \(\chi_{2167}(28,\cdot)\) \(\chi_{2167}(29,\cdot)\) \(\chi_{2167}(40,\cdot)\) \(\chi_{2167}(51,\cdot)\) \(\chi_{2167}(61,\cdot)\) \(\chi_{2167}(63,\cdot)\) \(\chi_{2167}(85,\cdot)\) \(\chi_{2167}(90,\cdot)\) \(\chi_{2167}(101,\cdot)\) \(\chi_{2167}(105,\cdot)\) \(\chi_{2167}(150,\cdot)\) \(\chi_{2167}(156,\cdot)\) \(\chi_{2167}(171,\cdot)\) \(\chi_{2167}(172,\cdot)\) \(\chi_{2167}(182,\cdot)\) \(\chi_{2167}(193,\cdot)\) \(\chi_{2167}(226,\cdot)\) \(\chi_{2167}(237,\cdot)\) \(\chi_{2167}(239,\cdot)\) \(\chi_{2167}(248,\cdot)\) \(\chi_{2167}(250,\cdot)\) \(\chi_{2167}(260,\cdot)\) \(\chi_{2167}(282,\cdot)\) \(\chi_{2167}(332,\cdot)\) \(\chi_{2167}(347,\cdot)\) \(\chi_{2167}(369,\cdot)\) \(\chi_{2167}(387,\cdot)\) \(\chi_{2167}(431,\cdot)\) \(\chi_{2167}(436,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{245})$
Fixed field: Number field defined by a degree 490 polynomial (not computed)

Values on generators

\((1971,199)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{16}{49}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 2167 }(61, a) \) \(-1\)\(1\)\(e\left(\frac{111}{490}\right)\)\(e\left(\frac{74}{245}\right)\)\(e\left(\frac{111}{245}\right)\)\(e\left(\frac{162}{245}\right)\)\(e\left(\frac{37}{70}\right)\)\(e\left(\frac{477}{490}\right)\)\(e\left(\frac{333}{490}\right)\)\(e\left(\frac{148}{245}\right)\)\(e\left(\frac{87}{98}\right)\)\(e\left(\frac{37}{49}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2167 }(61,a) \;\) at \(\;a = \) e.g. 2