sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(21952, base_ring=CyclotomicField(784))
M = H._module
chi = DirichletCharacter(H, M([392,735,344]))
pari:[g,chi] = znchar(Mod(1203,21952))
Modulus: | 21952 | |
Conductor: | 21952 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 784 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ21952(27,⋅)
χ21952(83,⋅)
χ21952(139,⋅)
χ21952(251,⋅)
χ21952(307,⋅)
χ21952(363,⋅)
χ21952(419,⋅)
χ21952(475,⋅)
χ21952(531,⋅)
χ21952(643,⋅)
χ21952(699,⋅)
χ21952(755,⋅)
χ21952(811,⋅)
χ21952(867,⋅)
χ21952(923,⋅)
χ21952(1035,⋅)
χ21952(1091,⋅)
χ21952(1147,⋅)
χ21952(1203,⋅)
χ21952(1259,⋅)
χ21952(1315,⋅)
χ21952(1427,⋅)
χ21952(1483,⋅)
χ21952(1539,⋅)
χ21952(1595,⋅)
χ21952(1651,⋅)
χ21952(1707,⋅)
χ21952(1819,⋅)
χ21952(1875,⋅)
χ21952(1931,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(17151,9605,17153) → (−1,e(1615),e(9843))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ21952(1203,a) |
1 | 1 | e(784589) | e(784519) | e(392197) | e(784355) | e(78489) | e(19681) | e(19643) | e(169) | e(392229) | e(392127) |
sage:chi.jacobi_sum(n)