Properties

Label 21952.21419
Modulus $21952$
Conductor $21952$
Order $784$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21952, base_ring=CyclotomicField(784))
 
M = H._module
 
chi = DirichletCharacter(H, M([392,637,72]))
 
pari: [g,chi] = znchar(Mod(21419,21952))
 

Basic properties

Modulus: \(21952\)
Conductor: \(21952\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(784\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 21952.eg

\(\chi_{21952}(27,\cdot)\) \(\chi_{21952}(83,\cdot)\) \(\chi_{21952}(139,\cdot)\) \(\chi_{21952}(251,\cdot)\) \(\chi_{21952}(307,\cdot)\) \(\chi_{21952}(363,\cdot)\) \(\chi_{21952}(419,\cdot)\) \(\chi_{21952}(475,\cdot)\) \(\chi_{21952}(531,\cdot)\) \(\chi_{21952}(643,\cdot)\) \(\chi_{21952}(699,\cdot)\) \(\chi_{21952}(755,\cdot)\) \(\chi_{21952}(811,\cdot)\) \(\chi_{21952}(867,\cdot)\) \(\chi_{21952}(923,\cdot)\) \(\chi_{21952}(1035,\cdot)\) \(\chi_{21952}(1091,\cdot)\) \(\chi_{21952}(1147,\cdot)\) \(\chi_{21952}(1203,\cdot)\) \(\chi_{21952}(1259,\cdot)\) \(\chi_{21952}(1315,\cdot)\) \(\chi_{21952}(1427,\cdot)\) \(\chi_{21952}(1483,\cdot)\) \(\chi_{21952}(1539,\cdot)\) \(\chi_{21952}(1595,\cdot)\) \(\chi_{21952}(1651,\cdot)\) \(\chi_{21952}(1707,\cdot)\) \(\chi_{21952}(1819,\cdot)\) \(\chi_{21952}(1875,\cdot)\) \(\chi_{21952}(1931,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{784})$
Fixed field: Number field defined by a degree 784 polynomial (not computed)

Values on generators

\((17151,9605,17153)\) → \((-1,e\left(\frac{13}{16}\right),e\left(\frac{9}{98}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\( \chi_{ 21952 }(21419, a) \) \(1\)\(1\)\(e\left(\frac{23}{784}\right)\)\(e\left(\frac{373}{784}\right)\)\(e\left(\frac{23}{392}\right)\)\(e\left(\frac{521}{784}\right)\)\(e\left(\frac{283}{784}\right)\)\(e\left(\frac{99}{196}\right)\)\(e\left(\frac{9}{196}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{367}{392}\right)\)\(e\left(\frac{373}{392}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 21952 }(21419,a) \;\) at \(\;a = \) e.g. 2