from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2200, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,5,3,7]))
pari: [g,chi] = znchar(Mod(1789,2200))
Basic properties
Modulus: | \(2200\) | |
Conductor: | \(2200\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(10\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2200.bx
\(\chi_{2200}(1029,\cdot)\) \(\chi_{2200}(1069,\cdot)\) \(\chi_{2200}(1789,\cdot)\) \(\chi_{2200}(2109,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{5})\) |
Fixed field: | 10.0.58948692275000000000000000.2 |
Values on generators
\((551,1101,177,1201)\) → \((1,-1,e\left(\frac{3}{10}\right),e\left(\frac{7}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 2200 }(1789, a) \) | \(-1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(1\) |
sage: chi.jacobi_sum(n)