from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2200, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,0,5,7]))
chi.galois_orbit()
[g,chi] = znchar(Mod(249,2200))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(2200\) | |
Conductor: | \(55\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(10\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 55.h | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{5})\) |
Fixed field: | 10.0.7368586534375.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2200}(249,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{2200}(849,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{2200}(1249,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{2200}(1449,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) |