Properties

Label 2200.fm
Modulus $2200$
Conductor $200$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2200, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10,3,0]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(133,2200))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2200\)
Conductor: \(200\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 200.x
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.3125000000000000000000000000000000.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{2200}(133,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(-i\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{2200}(397,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(i\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{2200}(573,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(-i\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{2200}(837,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(i\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{2200}(1013,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(-i\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{2200}(1277,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(i\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{2200}(1453,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-i\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{2200}(1717,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(i\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\)