from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2220, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,3,0,1]))
pari: [g,chi] = znchar(Mod(101,2220))
Basic properties
Modulus: | \(2220\) | |
Conductor: | \(111\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(6\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{111}(101,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2220.br
\(\chi_{2220}(101,\cdot)\) \(\chi_{2220}(1121,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\mathbb{Q}(\zeta_3)\) |
Fixed field: | 6.0.1872286839.1 |
Values on generators
\((1111,1481,1777,1741)\) → \((1,-1,1,e\left(\frac{1}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(41\) | \(43\) |
\( \chi_{ 2220 }(101, a) \) | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
sage: chi.jacobi_sum(n)