Properties

Label 2220.1069
Modulus $2220$
Conductor $185$
Order $18$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2220, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,9,10]))
 
pari: [g,chi] = znchar(Mod(1069,2220))
 

Basic properties

Modulus: \(2220\)
Conductor: \(185\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{185}(144,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2220.dg

\(\chi_{2220}(49,\cdot)\) \(\chi_{2220}(229,\cdot)\) \(\chi_{2220}(349,\cdot)\) \(\chi_{2220}(589,\cdot)\) \(\chi_{2220}(1069,\cdot)\) \(\chi_{2220}(1489,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1111,1481,1777,1741)\) → \((1,1,-1,e\left(\frac{5}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(41\)\(43\)
\( \chi_{ 2220 }(1069, a) \) \(1\)\(1\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{9}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2220 }(1069,a) \;\) at \(\;a = \) e.g. 2