Properties

Label 2220.1069
Modulus 22202220
Conductor 185185
Order 1818
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2220, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,0,9,10]))
 
Copy content pari:[g,chi] = znchar(Mod(1069,2220))
 

Basic properties

Modulus: 22202220
Conductor: 185185
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ185(144,)\chi_{185}(144,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2220.dg

χ2220(49,)\chi_{2220}(49,\cdot) χ2220(229,)\chi_{2220}(229,\cdot) χ2220(349,)\chi_{2220}(349,\cdot) χ2220(589,)\chi_{2220}(589,\cdot) χ2220(1069,)\chi_{2220}(1069,\cdot) χ2220(1489,)\chi_{2220}(1489,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(1111,1481,1777,1741)(1111,1481,1777,1741)(1,1,1,e(59))(1,1,-1,e\left(\frac{5}{9}\right))

First values

aa 1-11177111113131717191923232929313141414343
χ2220(1069,a) \chi_{ 2220 }(1069, a) 1111e(518)e\left(\frac{5}{18}\right)e(23)e\left(\frac{2}{3}\right)e(1118)e\left(\frac{11}{18}\right)e(718)e\left(\frac{7}{18}\right)e(49)e\left(\frac{4}{9}\right)e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)11e(19)e\left(\frac{1}{9}\right)1-1
Copy content sage:chi.jacobi_sum(n)
 
χ2220(1069,a)   \chi_{ 2220 }(1069,a) \; at   a=\;a = e.g. 2