Properties

Label 2236.1095
Modulus 22362236
Conductor 22362236
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2236, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,14,37]))
 
pari: [g,chi] = znchar(Mod(1095,2236))
 

Basic properties

Modulus: 22362236
Conductor: 22362236
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2236.cz

χ2236(3,)\chi_{2236}(3,\cdot) χ2236(55,)\chi_{2236}(55,\cdot) χ2236(243,)\chi_{2236}(243,\cdot) χ2236(263,)\chi_{2236}(263,\cdot) χ2236(503,)\chi_{2236}(503,\cdot) χ2236(1023,)\chi_{2236}(1023,\cdot) χ2236(1095,)\chi_{2236}(1095,\cdot) χ2236(1179,)\chi_{2236}(1179,\cdot) χ2236(1491,)\chi_{2236}(1491,\cdot) χ2236(1667,)\chi_{2236}(1667,\cdot) χ2236(2083,)\chi_{2236}(2083,\cdot) χ2236(2219,)\chi_{2236}(2219,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(1119,1549,261)(1119,1549,261)(1,e(13),e(3742))(-1,e\left(\frac{1}{3}\right),e\left(\frac{37}{42}\right))

First values

aa 1-11133557799111115151717191921212323
χ2236(1095,a) \chi_{ 2236 }(1095, a) 1111e(57)e\left(\frac{5}{7}\right)e(142)e\left(\frac{1}{42}\right)11e(37)e\left(\frac{3}{7}\right)e(1142)e\left(\frac{11}{42}\right)e(3142)e\left(\frac{31}{42}\right)e(17)e\left(\frac{1}{7}\right)e(1921)e\left(\frac{19}{21}\right)e(57)e\left(\frac{5}{7}\right)e(1314)e\left(\frac{13}{14}\right)
sage: chi.jacobi_sum(n)
 
χ2236(1095,a)   \chi_{ 2236 }(1095,a) \; at   a=\;a = e.g. 2