Properties

Label 2240.1889
Modulus 22402240
Conductor 280280
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,1,1]))
 
pari: [g,chi] = znchar(Mod(1889,2240))
 

Basic properties

Modulus: 22402240
Conductor: 280280
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ280(69,)\chi_{280}(69,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2240.c

χ2240(1889,)\chi_{2240}(1889,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(70)\Q(\sqrt{-70})

Values on generators

(1471,1541,897,1921)(1471,1541,897,1921)(1,1,1,1)(1,-1,-1,-1)

First values

aa 1-111339911111313171719192323272729293131
χ2240(1889,a) \chi_{ 2240 }(1889, a) 1-1111-1111-11-111111-11-11-11-1
sage: chi.jacobi_sum(n)
 
χ2240(1889,a)   \chi_{ 2240 }(1889,a) \; at   a=\;a = e.g. 2