from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2240, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,9,12,16]))
pari: [g,chi] = znchar(Mod(1929,2240))
Basic properties
Modulus: | \(2240\) | |
Conductor: | \(1120\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1120}(669,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2240.ei
\(\chi_{2240}(9,\cdot)\) \(\chi_{2240}(249,\cdot)\) \(\chi_{2240}(569,\cdot)\) \(\chi_{2240}(809,\cdot)\) \(\chi_{2240}(1129,\cdot)\) \(\chi_{2240}(1369,\cdot)\) \(\chi_{2240}(1689,\cdot)\) \(\chi_{2240}(1929,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | Number field defined by a degree 24 polynomial |
Values on generators
\((1471,1541,897,1921)\) → \((1,e\left(\frac{3}{8}\right),-1,e\left(\frac{2}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 2240 }(1929, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage: chi.jacobi_sum(n)