Properties

Label 2240.1929
Modulus $2240$
Conductor $1120$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,12,16]))
 
pari: [g,chi] = znchar(Mod(1929,2240))
 

Basic properties

Modulus: \(2240\)
Conductor: \(1120\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1120}(669,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2240.ei

\(\chi_{2240}(9,\cdot)\) \(\chi_{2240}(249,\cdot)\) \(\chi_{2240}(569,\cdot)\) \(\chi_{2240}(809,\cdot)\) \(\chi_{2240}(1129,\cdot)\) \(\chi_{2240}(1369,\cdot)\) \(\chi_{2240}(1689,\cdot)\) \(\chi_{2240}(1929,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((1471,1541,897,1921)\) → \((1,e\left(\frac{3}{8}\right),-1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 2240 }(1929, a) \) \(1\)\(1\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2240 }(1929,a) \;\) at \(\;a = \) e.g. 2