from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2240, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,33,24,8]))
pari: [g,chi] = znchar(Mod(1949,2240))
Basic properties
Modulus: | \(2240\) | |
Conductor: | \(2240\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2240.ff
\(\chi_{2240}(229,\cdot)\) \(\chi_{2240}(269,\cdot)\) \(\chi_{2240}(509,\cdot)\) \(\chi_{2240}(549,\cdot)\) \(\chi_{2240}(789,\cdot)\) \(\chi_{2240}(829,\cdot)\) \(\chi_{2240}(1069,\cdot)\) \(\chi_{2240}(1109,\cdot)\) \(\chi_{2240}(1349,\cdot)\) \(\chi_{2240}(1389,\cdot)\) \(\chi_{2240}(1629,\cdot)\) \(\chi_{2240}(1669,\cdot)\) \(\chi_{2240}(1909,\cdot)\) \(\chi_{2240}(1949,\cdot)\) \(\chi_{2240}(2189,\cdot)\) \(\chi_{2240}(2229,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Values on generators
\((1471,1541,897,1921)\) → \((1,e\left(\frac{11}{16}\right),-1,e\left(\frac{1}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 2240 }(1949, a) \) | \(-1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage: chi.jacobi_sum(n)