Properties

Label 2240.1949
Modulus $2240$
Conductor $2240$
Order $48$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,33,24,8]))
 
pari: [g,chi] = znchar(Mod(1949,2240))
 

Basic properties

Modulus: \(2240\)
Conductor: \(2240\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2240.ff

\(\chi_{2240}(229,\cdot)\) \(\chi_{2240}(269,\cdot)\) \(\chi_{2240}(509,\cdot)\) \(\chi_{2240}(549,\cdot)\) \(\chi_{2240}(789,\cdot)\) \(\chi_{2240}(829,\cdot)\) \(\chi_{2240}(1069,\cdot)\) \(\chi_{2240}(1109,\cdot)\) \(\chi_{2240}(1349,\cdot)\) \(\chi_{2240}(1389,\cdot)\) \(\chi_{2240}(1629,\cdot)\) \(\chi_{2240}(1669,\cdot)\) \(\chi_{2240}(1909,\cdot)\) \(\chi_{2240}(1949,\cdot)\) \(\chi_{2240}(2189,\cdot)\) \(\chi_{2240}(2229,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((1471,1541,897,1921)\) → \((1,e\left(\frac{11}{16}\right),-1,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 2240 }(1949, a) \) \(-1\)\(1\)\(e\left(\frac{35}{48}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{5}{48}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{31}{48}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2240 }(1949,a) \;\) at \(\;a = \) e.g. 2