sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2240, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,33,24,8]))
pari:[g,chi] = znchar(Mod(1949,2240))
Modulus: | 2240 | |
Conductor: | 2240 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 48 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2240(229,⋅)
χ2240(269,⋅)
χ2240(509,⋅)
χ2240(549,⋅)
χ2240(789,⋅)
χ2240(829,⋅)
χ2240(1069,⋅)
χ2240(1109,⋅)
χ2240(1349,⋅)
χ2240(1389,⋅)
χ2240(1629,⋅)
χ2240(1669,⋅)
χ2240(1909,⋅)
χ2240(1949,⋅)
χ2240(2189,⋅)
χ2240(2229,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1471,1541,897,1921) → (1,e(1611),−1,e(61))
a |
−1 | 1 | 3 | 9 | 11 | 13 | 17 | 19 | 23 | 27 | 29 | 31 |
χ2240(1949,a) |
−1 | 1 | e(4835) | e(2411) | e(485) | e(165) | e(1211) | e(4831) | e(2411) | e(163) | e(169) | e(32) |
sage:chi.jacobi_sum(n)