sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2240, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,9,12,8]))
pari:[g,chi] = znchar(Mod(923,2240))
Modulus: | 2240 | |
Conductor: | 2240 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 16 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2240(307,⋅)
χ2240(363,⋅)
χ2240(867,⋅)
χ2240(923,⋅)
χ2240(1427,⋅)
χ2240(1483,⋅)
χ2240(1987,⋅)
χ2240(2043,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1471,1541,897,1921) → (−1,e(169),−i,−1)
a |
−1 | 1 | 3 | 9 | 11 | 13 | 17 | 19 | 23 | 27 | 29 | 31 |
χ2240(923,a) |
−1 | 1 | e(1615) | e(87) | e(165) | e(163) | 1 | e(167) | e(85) | e(1613) | e(1611) | −1 |
sage:chi.jacobi_sum(n)