Properties

Label 2240.923
Modulus 22402240
Conductor 22402240
Order 1616
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2240, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,9,12,8]))
 
Copy content pari:[g,chi] = znchar(Mod(923,2240))
 

Basic properties

Modulus: 22402240
Conductor: 22402240
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1616
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2240.ee

χ2240(307,)\chi_{2240}(307,\cdot) χ2240(363,)\chi_{2240}(363,\cdot) χ2240(867,)\chi_{2240}(867,\cdot) χ2240(923,)\chi_{2240}(923,\cdot) χ2240(1427,)\chi_{2240}(1427,\cdot) χ2240(1483,)\chi_{2240}(1483,\cdot) χ2240(1987,)\chi_{2240}(1987,\cdot) χ2240(2043,)\chi_{2240}(2043,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.0.850734469462919174923747328000000000000.1

Values on generators

(1471,1541,897,1921)(1471,1541,897,1921)(1,e(916),i,1)(-1,e\left(\frac{9}{16}\right),-i,-1)

First values

aa 1-111339911111313171719192323272729293131
χ2240(923,a) \chi_{ 2240 }(923, a) 1-111e(1516)e\left(\frac{15}{16}\right)e(78)e\left(\frac{7}{8}\right)e(516)e\left(\frac{5}{16}\right)e(316)e\left(\frac{3}{16}\right)11e(716)e\left(\frac{7}{16}\right)e(58)e\left(\frac{5}{8}\right)e(1316)e\left(\frac{13}{16}\right)e(1116)e\left(\frac{11}{16}\right)1-1
Copy content sage:chi.jacobi_sum(n)
 
χ2240(923,a)   \chi_{ 2240 }(923,a) \; at   a=\;a = e.g. 2