Properties

Label 2243.37
Modulus $2243$
Conductor $2243$
Order $2242$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2243, base_ring=CyclotomicField(2242))
 
M = H._module
 
chi = DirichletCharacter(H, M([1841]))
 
pari: [g,chi] = znchar(Mod(37,2243))
 

Basic properties

Modulus: \(2243\)
Conductor: \(2243\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2242\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2243.h

\(\chi_{2243}(2,\cdot)\) \(\chi_{2243}(5,\cdot)\) \(\chi_{2243}(6,\cdot)\) \(\chi_{2243}(8,\cdot)\) \(\chi_{2243}(13,\cdot)\) \(\chi_{2243}(14,\cdot)\) \(\chi_{2243}(15,\cdot)\) \(\chi_{2243}(18,\cdot)\) \(\chi_{2243}(19,\cdot)\) \(\chi_{2243}(20,\cdot)\) \(\chi_{2243}(22,\cdot)\) \(\chi_{2243}(23,\cdot)\) \(\chi_{2243}(24,\cdot)\) \(\chi_{2243}(29,\cdot)\) \(\chi_{2243}(32,\cdot)\) \(\chi_{2243}(34,\cdot)\) \(\chi_{2243}(35,\cdot)\) \(\chi_{2243}(37,\cdot)\) \(\chi_{2243}(39,\cdot)\) \(\chi_{2243}(41,\cdot)\) \(\chi_{2243}(42,\cdot)\) \(\chi_{2243}(45,\cdot)\) \(\chi_{2243}(47,\cdot)\) \(\chi_{2243}(50,\cdot)\) \(\chi_{2243}(52,\cdot)\) \(\chi_{2243}(54,\cdot)\) \(\chi_{2243}(55,\cdot)\) \(\chi_{2243}(56,\cdot)\) \(\chi_{2243}(59,\cdot)\) \(\chi_{2243}(60,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1121})$
Fixed field: Number field defined by a degree 2242 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{1841}{2242}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2243 }(37, a) \) \(-1\)\(1\)\(e\left(\frac{1841}{2242}\right)\)\(e\left(\frac{994}{1121}\right)\)\(e\left(\frac{720}{1121}\right)\)\(e\left(\frac{485}{2242}\right)\)\(e\left(\frac{1587}{2242}\right)\)\(e\left(\frac{273}{1121}\right)\)\(e\left(\frac{1039}{2242}\right)\)\(e\left(\frac{867}{1121}\right)\)\(e\left(\frac{42}{1121}\right)\)\(e\left(\frac{309}{1121}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2243 }(37,a) \;\) at \(\;a = \) e.g. 2