Properties

Label 228.119
Modulus 228228
Conductor 228228
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(228, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,9,16]))
 
pari: [g,chi] = znchar(Mod(119,228))
 

Basic properties

Modulus: 228228
Conductor: 228228
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 228.v

χ228(23,)\chi_{228}(23,\cdot) χ228(35,)\chi_{228}(35,\cdot) χ228(47,)\chi_{228}(47,\cdot) χ228(119,)\chi_{228}(119,\cdot) χ228(131,)\chi_{228}(131,\cdot) χ228(215,)\chi_{228}(215,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(115,77,97)(115,77,97)(1,1,e(89))(-1,-1,e\left(\frac{8}{9}\right))

First values

aa 1-111557711111313171723232525292931313535
χ228(119,a) \chi_{ 228 }(119, a) 1111e(1318)e\left(\frac{13}{18}\right)e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)e(49)e\left(\frac{4}{9}\right)e(718)e\left(\frac{7}{18}\right)e(79)e\left(\frac{7}{9}\right)e(49)e\left(\frac{4}{9}\right)e(1118)e\left(\frac{11}{18}\right)e(56)e\left(\frac{5}{6}\right)e(59)e\left(\frac{5}{9}\right)
sage: chi.jacobi_sum(n)
 
χ228(119,a)   \chi_{ 228 }(119,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ228(119,))   \tau_{ a }( \chi_{ 228 }(119,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ228(119,),χ228(n,))   J(\chi_{ 228 }(119,·),\chi_{ 228 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ228(119,))  K(a,b,\chi_{ 228 }(119,·)) \; at   a,b=\; a,b = e.g. 1,2