sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(229, base_ring=CyclotomicField(76))
M = H._module
chi = DirichletCharacter(H, M([33]))
pari:[g,chi] = znchar(Mod(30,229))
Modulus: | 229 | |
Conductor: | 229 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 76 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ229(2,⋅)
χ229(8,⋅)
χ229(13,⋅)
χ229(21,⋅)
χ229(22,⋅)
χ229(30,⋅)
χ229(32,⋅)
χ229(34,⋅)
χ229(52,⋅)
χ229(54,⋅)
χ229(84,⋅)
χ229(86,⋅)
χ229(88,⋅)
χ229(93,⋅)
χ229(101,⋅)
χ229(106,⋅)
χ229(109,⋅)
χ229(114,⋅)
χ229(115,⋅)
χ229(120,⋅)
χ229(123,⋅)
χ229(128,⋅)
χ229(136,⋅)
χ229(141,⋅)
χ229(143,⋅)
χ229(145,⋅)
χ229(175,⋅)
χ229(177,⋅)
χ229(195,⋅)
χ229(197,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
6 → e(7633)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ229(30,a) |
−1 | 1 | e(769) | e(196) | e(389) | e(3821) | e(7633) | e(7635) | e(7627) | e(1912) | e(7651) | e(3813) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)