Properties

Label 2299.2254
Modulus $2299$
Conductor $2299$
Order $66$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([51,55]))
 
pari: [g,chi] = znchar(Mod(2254,2299))
 

Basic properties

Modulus: \(2299\)
Conductor: \(2299\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2299.bd

\(\chi_{2299}(65,\cdot)\) \(\chi_{2299}(164,\cdot)\) \(\chi_{2299}(274,\cdot)\) \(\chi_{2299}(373,\cdot)\) \(\chi_{2299}(582,\cdot)\) \(\chi_{2299}(692,\cdot)\) \(\chi_{2299}(791,\cdot)\) \(\chi_{2299}(901,\cdot)\) \(\chi_{2299}(1000,\cdot)\) \(\chi_{2299}(1110,\cdot)\) \(\chi_{2299}(1319,\cdot)\) \(\chi_{2299}(1418,\cdot)\) \(\chi_{2299}(1528,\cdot)\) \(\chi_{2299}(1627,\cdot)\) \(\chi_{2299}(1737,\cdot)\) \(\chi_{2299}(1836,\cdot)\) \(\chi_{2299}(1946,\cdot)\) \(\chi_{2299}(2045,\cdot)\) \(\chi_{2299}(2155,\cdot)\) \(\chi_{2299}(2254,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((970,1332)\) → \((e\left(\frac{17}{22}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 2299 }(2254, a) \) \(1\)\(1\)\(e\left(\frac{20}{33}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{33}\right)\)\(e\left(\frac{17}{33}\right)\)\(e\left(\frac{29}{66}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{4}{33}\right)\)\(e\left(\frac{1}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2299 }(2254,a) \;\) at \(\;a = \) e.g. 2