from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2303, base_ring=CyclotomicField(966))
M = H._module
chi = DirichletCharacter(H, M([253,210]))
pari: [g,chi] = znchar(Mod(12,2303))
χ2303(3,⋅)
χ2303(12,⋅)
χ2303(17,⋅)
χ2303(24,⋅)
χ2303(54,⋅)
χ2303(59,⋅)
χ2303(61,⋅)
χ2303(75,⋅)
χ2303(89,⋅)
χ2303(96,⋅)
χ2303(101,⋅)
χ2303(103,⋅)
χ2303(108,⋅)
χ2303(110,⋅)
χ2303(115,⋅)
χ2303(122,⋅)
χ2303(131,⋅)
χ2303(136,⋅)
χ2303(143,⋅)
χ2303(145,⋅)
χ2303(150,⋅)
χ2303(157,⋅)
χ2303(159,⋅)
χ2303(173,⋅)
χ2303(192,⋅)
χ2303(194,⋅)
χ2303(206,⋅)
χ2303(213,⋅)
χ2303(220,⋅)
χ2303(222,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2257,99) → (e(4211),e(235))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ2303(12,a) |
−1 | 1 | e(483349) | e(966589) | e(483215) | e(966785) | e(322107) | e(16127) | e(483106) | e(966517) | e(483482) | e(96653) |