Properties

Label 2303.281
Modulus 23032303
Conductor 23032303
Order 1414
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,7]))
 
pari: [g,chi] = znchar(Mod(281,2303))
 

Basic properties

Modulus: 23032303
Conductor: 23032303
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1414
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2303.j

χ2303(281,)\chi_{2303}(281,\cdot) χ2303(610,)\chi_{2303}(610,\cdot) χ2303(939,)\chi_{2303}(939,\cdot) χ2303(1268,)\chi_{2303}(1268,\cdot) χ2303(1597,)\chi_{2303}(1597,\cdot) χ2303(1926,)\chi_{2303}(1926,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

(2257,99)(2257,99)(e(27),1)(e\left(\frac{2}{7}\right),-1)

First values

aa 1-11122334455668899101011111212
χ2303(281,a) \chi_{ 2303 }(281, a) 1-111e(37)e\left(\frac{3}{7}\right)e(27)e\left(\frac{2}{7}\right)e(67)e\left(\frac{6}{7}\right)e(1114)e\left(\frac{11}{14}\right)e(57)e\left(\frac{5}{7}\right)e(27)e\left(\frac{2}{7}\right)e(47)e\left(\frac{4}{7}\right)e(314)e\left(\frac{3}{14}\right)e(1314)e\left(\frac{13}{14}\right)e(17)e\left(\frac{1}{7}\right)
sage: chi.jacobi_sum(n)
 
χ2303(281,a)   \chi_{ 2303 }(281,a) \; at   a=\;a = e.g. 2