sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2303, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([4,7]))
pari:[g,chi] = znchar(Mod(281,2303))
Modulus: | 2303 | |
Conductor: | 2303 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 14 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2303(281,⋅)
χ2303(610,⋅)
χ2303(939,⋅)
χ2303(1268,⋅)
χ2303(1597,⋅)
χ2303(1926,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2257,99) → (e(72),−1)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ2303(281,a) |
−1 | 1 | e(73) | e(72) | e(76) | e(1411) | e(75) | e(72) | e(74) | e(143) | e(1413) | e(71) |
sage:chi.jacobi_sum(n)