from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2304, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,15,4]))
pari: [g,chi] = znchar(Mod(2207,2304))
Basic properties
Modulus: | \(2304\) | |
Conductor: | \(288\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{288}(11,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2304.bj
\(\chi_{2304}(95,\cdot)\) \(\chi_{2304}(479,\cdot)\) \(\chi_{2304}(671,\cdot)\) \(\chi_{2304}(1055,\cdot)\) \(\chi_{2304}(1247,\cdot)\) \(\chi_{2304}(1631,\cdot)\) \(\chi_{2304}(1823,\cdot)\) \(\chi_{2304}(2207,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.24.1486465269728735333725176976133731985582456832.1 |
Values on generators
\((1279,2053,1793)\) → \((-1,e\left(\frac{5}{8}\right),e\left(\frac{1}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 2304 }(2207, a) \) | \(1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage: chi.jacobi_sum(n)