Properties

Label 2320.1077
Modulus $2320$
Conductor $2320$
Order $28$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,7,7,2]))
 
pari: [g,chi] = znchar(Mod(1077,2320))
 

Basic properties

Modulus: \(2320\)
Conductor: \(2320\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2320.ds

\(\chi_{2320}(13,\cdot)\) \(\chi_{2320}(93,\cdot)\) \(\chi_{2320}(357,\cdot)\) \(\chi_{2320}(573,\cdot)\) \(\chi_{2320}(1053,\cdot)\) \(\chi_{2320}(1077,\cdot)\) \(\chi_{2320}(1397,\cdot)\) \(\chi_{2320}(1637,\cdot)\) \(\chi_{2320}(1717,\cdot)\) \(\chi_{2320}(1773,\cdot)\) \(\chi_{2320}(2093,\cdot)\) \(\chi_{2320}(2197,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((2031,581,1857,321)\) → \((1,i,i,e\left(\frac{1}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 2320 }(1077, a) \) \(-1\)\(1\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{11}{14}\right)\)\(-i\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{13}{28}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{4}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2320 }(1077,a) \;\) at \(\;a = \) e.g. 2