from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2352, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,21,21,1]))
pari: [g,chi] = znchar(Mod(1865,2352))
Basic properties
Modulus: | \(2352\) | |
Conductor: | \(1176\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1176}(101,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2352.da
\(\chi_{2352}(89,\cdot)\) \(\chi_{2352}(185,\cdot)\) \(\chi_{2352}(425,\cdot)\) \(\chi_{2352}(761,\cdot)\) \(\chi_{2352}(857,\cdot)\) \(\chi_{2352}(1193,\cdot)\) \(\chi_{2352}(1433,\cdot)\) \(\chi_{2352}(1529,\cdot)\) \(\chi_{2352}(1769,\cdot)\) \(\chi_{2352}(1865,\cdot)\) \(\chi_{2352}(2105,\cdot)\) \(\chi_{2352}(2201,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.42.11402108177106104552822037830207017370882719938852769609842060849495301710065603498954056531968.1 |
Values on generators
\((1471,1765,785,2257)\) → \((1,-1,-1,e\left(\frac{1}{42}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 2352 }(1865, a) \) | \(1\) | \(1\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{42}\right)\) |
sage: chi.jacobi_sum(n)