Properties

Label 2352.2203
Modulus $2352$
Conductor $784$
Order $84$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([42,21,0,10]))
 
pari: [g,chi] = znchar(Mod(2203,2352))
 

Basic properties

Modulus: \(2352\)
Conductor: \(784\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{784}(635,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2352.dn

\(\chi_{2352}(115,\cdot)\) \(\chi_{2352}(187,\cdot)\) \(\chi_{2352}(283,\cdot)\) \(\chi_{2352}(355,\cdot)\) \(\chi_{2352}(451,\cdot)\) \(\chi_{2352}(523,\cdot)\) \(\chi_{2352}(691,\cdot)\) \(\chi_{2352}(787,\cdot)\) \(\chi_{2352}(859,\cdot)\) \(\chi_{2352}(955,\cdot)\) \(\chi_{2352}(1027,\cdot)\) \(\chi_{2352}(1123,\cdot)\) \(\chi_{2352}(1291,\cdot)\) \(\chi_{2352}(1363,\cdot)\) \(\chi_{2352}(1459,\cdot)\) \(\chi_{2352}(1531,\cdot)\) \(\chi_{2352}(1627,\cdot)\) \(\chi_{2352}(1699,\cdot)\) \(\chi_{2352}(1867,\cdot)\) \(\chi_{2352}(1963,\cdot)\) \(\chi_{2352}(2035,\cdot)\) \(\chi_{2352}(2131,\cdot)\) \(\chi_{2352}(2203,\cdot)\) \(\chi_{2352}(2299,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((1471,1765,785,2257)\) → \((-1,i,1,e\left(\frac{5}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 2352 }(2203, a) \) \(1\)\(1\)\(e\left(\frac{59}{84}\right)\)\(e\left(\frac{43}{84}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{84}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2352 }(2203,a) \;\) at \(\;a = \) e.g. 2