Properties

Label 2368.cy
Modulus $2368$
Conductor $592$
Order $36$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2368, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,9,13]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(15,2368))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2368\)
Conductor: \(592\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 592.ca
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.4886860176107258124616704873602845327686728999915307588219200292503475176863258640384.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{2368}(15,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{2368}(143,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{2368}(239,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{2368}(335,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{2368}(1071,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{2368}(1167,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{2368}(1263,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{2368}(1391,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{2368}(1615,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{2368}(1647,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{2368}(2127,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{2368}(2159,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{36}\right)\)