from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2381, base_ring=CyclotomicField(238))
M = H._module
chi = DirichletCharacter(H, M([178]))
pari: [g,chi] = znchar(Mod(500,2381))
χ2381(16,⋅)
χ2381(17,⋅)
χ2381(20,⋅)
χ2381(25,⋅)
χ2381(28,⋅)
χ2381(35,⋅)
χ2381(49,⋅)
χ2381(82,⋅)
χ2381(141,⋅)
χ2381(151,⋅)
χ2381(173,⋅)
χ2381(186,⋅)
χ2381(256,⋅)
χ2381(272,⋅)
χ2381(289,⋅)
χ2381(320,⋅)
χ2381(340,⋅)
χ2381(358,⋅)
χ2381(381,⋅)
χ2381(387,⋅)
χ2381(400,⋅)
χ2381(425,⋅)
χ2381(439,⋅)
χ2381(446,⋅)
χ2381(473,⋅)
χ2381(476,⋅)
χ2381(500,⋅)
χ2381(523,⋅)
χ2381(552,⋅)
χ2381(589,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
3 → e(11989)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2381(500,a) |
1 | 1 | e(119101) | e(11989) | e(11983) | e(11962) | e(11971) | e(11966) | e(11965) | e(11959) | e(11944) | e(11987) |