from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2385, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([13,13,1]))
pari: [g,chi] = znchar(Mod(269,2385))
Basic properties
Modulus: | \(2385\) | |
Conductor: | \(795\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(26\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{795}(269,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2385.bv
\(\chi_{2385}(269,\cdot)\) \(\chi_{2385}(449,\cdot)\) \(\chi_{2385}(494,\cdot)\) \(\chi_{2385}(539,\cdot)\) \(\chi_{2385}(674,\cdot)\) \(\chi_{2385}(854,\cdot)\) \(\chi_{2385}(944,\cdot)\) \(\chi_{2385}(1124,\cdot)\) \(\chi_{2385}(1259,\cdot)\) \(\chi_{2385}(1574,\cdot)\) \(\chi_{2385}(1619,\cdot)\) \(\chi_{2385}(2339,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{13})\) |
Fixed field: | Number field defined by a degree 26 polynomial |
Values on generators
\((1856,1432,1486)\) → \((-1,-1,e\left(\frac{1}{26}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 2385 }(269, a) \) | \(-1\) | \(1\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) |
sage: chi.jacobi_sum(n)