Properties

Label 2385.269
Modulus $2385$
Conductor $795$
Order $26$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2385, base_ring=CyclotomicField(26))
 
M = H._module
 
chi = DirichletCharacter(H, M([13,13,1]))
 
pari: [g,chi] = znchar(Mod(269,2385))
 

Basic properties

Modulus: \(2385\)
Conductor: \(795\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(26\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{795}(269,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2385.bv

\(\chi_{2385}(269,\cdot)\) \(\chi_{2385}(449,\cdot)\) \(\chi_{2385}(494,\cdot)\) \(\chi_{2385}(539,\cdot)\) \(\chi_{2385}(674,\cdot)\) \(\chi_{2385}(854,\cdot)\) \(\chi_{2385}(944,\cdot)\) \(\chi_{2385}(1124,\cdot)\) \(\chi_{2385}(1259,\cdot)\) \(\chi_{2385}(1574,\cdot)\) \(\chi_{2385}(1619,\cdot)\) \(\chi_{2385}(2339,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: Number field defined by a degree 26 polynomial

Values on generators

\((1856,1432,1486)\) → \((-1,-1,e\left(\frac{1}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 2385 }(269, a) \) \(-1\)\(1\)\(e\left(\frac{1}{26}\right)\)\(e\left(\frac{1}{13}\right)\)\(e\left(\frac{1}{26}\right)\)\(e\left(\frac{3}{26}\right)\)\(e\left(\frac{19}{26}\right)\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{1}{13}\right)\)\(e\left(\frac{2}{13}\right)\)\(e\left(\frac{5}{13}\right)\)\(e\left(\frac{11}{26}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2385 }(269,a) \;\) at \(\;a = \) e.g. 2