Properties

Label 2385.353
Modulus $2385$
Conductor $2385$
Order $156$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2385, base_ring=CyclotomicField(156))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,117,27]))
 
pari: [g,chi] = znchar(Mod(353,2385))
 

Basic properties

Modulus: \(2385\)
Conductor: \(2385\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(156\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2385.cr

\(\chi_{2385}(167,\cdot)\) \(\chi_{2385}(338,\cdot)\) \(\chi_{2385}(353,\cdot)\) \(\chi_{2385}(392,\cdot)\) \(\chi_{2385}(443,\cdot)\) \(\chi_{2385}(482,\cdot)\) \(\chi_{2385}(518,\cdot)\) \(\chi_{2385}(527,\cdot)\) \(\chi_{2385}(533,\cdot)\) \(\chi_{2385}(542,\cdot)\) \(\chi_{2385}(578,\cdot)\) \(\chi_{2385}(617,\cdot)\) \(\chi_{2385}(668,\cdot)\) \(\chi_{2385}(707,\cdot)\) \(\chi_{2385}(722,\cdot)\) \(\chi_{2385}(893,\cdot)\) \(\chi_{2385}(1082,\cdot)\) \(\chi_{2385}(1127,\cdot)\) \(\chi_{2385}(1148,\cdot)\) \(\chi_{2385}(1217,\cdot)\) \(\chi_{2385}(1238,\cdot)\) \(\chi_{2385}(1298,\cdot)\) \(\chi_{2385}(1328,\cdot)\) \(\chi_{2385}(1337,\cdot)\) \(\chi_{2385}(1352,\cdot)\) \(\chi_{2385}(1373,\cdot)\) \(\chi_{2385}(1433,\cdot)\) \(\chi_{2385}(1463,\cdot)\) \(\chi_{2385}(1517,\cdot)\) \(\chi_{2385}(1523,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((1856,1432,1486)\) → \((e\left(\frac{1}{6}\right),-i,e\left(\frac{9}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 2385 }(353, a) \) \(-1\)\(1\)\(e\left(\frac{7}{78}\right)\)\(e\left(\frac{7}{39}\right)\)\(e\left(\frac{131}{156}\right)\)\(e\left(\frac{7}{26}\right)\)\(e\left(\frac{8}{39}\right)\)\(e\left(\frac{115}{156}\right)\)\(e\left(\frac{145}{156}\right)\)\(e\left(\frac{14}{39}\right)\)\(e\left(\frac{51}{52}\right)\)\(e\left(\frac{47}{52}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2385 }(353,a) \;\) at \(\;a = \) e.g. 2