Properties

Label 2385.83
Modulus $2385$
Conductor $2385$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2385, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,9,3]))
 
pari: [g,chi] = znchar(Mod(83,2385))
 

Basic properties

Modulus: \(2385\)
Conductor: \(2385\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2385.bm

\(\chi_{2385}(83,\cdot)\) \(\chi_{2385}(182,\cdot)\) \(\chi_{2385}(878,\cdot)\) \(\chi_{2385}(977,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((1856,1432,1486)\) → \((e\left(\frac{1}{6}\right),-i,i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 2385 }(83, a) \) \(-1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(-1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2385 }(83,a) \;\) at \(\;a = \) e.g. 2