Properties

Label 2385.bh
Modulus 23852385
Conductor 4545
Order 1212
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2385, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([8,3,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(637,2385)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 23852385
Conductor: 4545
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1212
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 45.k
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.84075626953125.1

Characters in Galois orbit

Character 1-1 11 22 44 77 88 1111 1313 1414 1616 1717 1919
χ2385(637,)\chi_{2385}(637,\cdot) 1-1 11 e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) e(1112)e\left(\frac{11}{12}\right) i-i e(23)e\left(\frac{2}{3}\right) e(112)e\left(\frac{1}{12}\right) e(56)e\left(\frac{5}{6}\right) e(23)e\left(\frac{2}{3}\right) ii 1-1
χ2385(1273,)\chi_{2385}(1273,\cdot) 1-1 11 e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) e(112)e\left(\frac{1}{12}\right) ii e(13)e\left(\frac{1}{3}\right) e(1112)e\left(\frac{11}{12}\right) e(16)e\left(\frac{1}{6}\right) e(13)e\left(\frac{1}{3}\right) i-i 1-1
χ2385(2068,)\chi_{2385}(2068,\cdot) 1-1 11 e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) e(512)e\left(\frac{5}{12}\right) ii e(23)e\left(\frac{2}{3}\right) e(712)e\left(\frac{7}{12}\right) e(56)e\left(\frac{5}{6}\right) e(23)e\left(\frac{2}{3}\right) i-i 1-1
χ2385(2227,)\chi_{2385}(2227,\cdot) 1-1 11 e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) e(712)e\left(\frac{7}{12}\right) i-i e(13)e\left(\frac{1}{3}\right) e(512)e\left(\frac{5}{12}\right) e(16)e\left(\frac{1}{6}\right) e(13)e\left(\frac{1}{3}\right) ii 1-1